Inverse scattering theory: renormalization of the Lippmann-Schwinger equation for acoustic scattering in one dimension.
نویسندگان
چکیده
The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and especially for acoustic scattering for which the interaction depends on the square of the frequency. By contrast, it is well known that the Born-Neumann series for the Volterra integral equations in quantum scattering are absolutely convergent, independent of the strength of the coupling characterizing the interaction. The transformation of the Lippmann-Schwinger equation from a Fredholm to a Volterra structure by renormalization has been considered previously for quantum scattering calculations and electromagnetic scattering. In this paper, we employ the renormalization technique to obtain a Volterra equation framework for the inverse acoustic scattering series, proving that this series also converges absolutely in the entire complex plane of coupling constant and frequency values. The present results are for acoustic scattering in one dimension, but the method is general. The approach is illustrated by applications to two simple one-dimensional models for acoustic scattering.
منابع مشابه
One dimensional acoustic direct nonlinear inversion using the Volterra inverse scattering series
Direct inversion of acoustic scattering problems is nonlinear. One way to treat the inverse scattering problem is based on the reversion of the Born–Neumann series solution of the Lippmann–Schwinger equation. An important issue for this approach is the radius of convergence of the Born–Neumann series for the forward problem. However, this issue can be tackled by employing a renormalization tech...
متن کاملSparsifying Preconditioner for the Lippmann-Schwinger Equation
The Lippmann–Schwinger equation is an integral equation formulation for acoustic and electromagnetic scattering from an inhomogeneous medium and quantum scattering from a localized potential. We present the sparsifying preconditioner for accelerating the iterative solution of the Lippmann–Schwinger equation. This new preconditioner transforms the discretized Lippmann–Schwinger equation into spa...
متن کاملThe Operator Equations of Lippmann-Schwinger Type for Acoustic and Electromagnetic Scattering Problems in L
This paper is concerned with the scattering of acoustic and electromagnetic time harmonic plane waves by an inhomogeneous medium. These problems can be translated into volume integral equations of the second kind – the most prominent example is the Lippmann-Schwinger integral equation. In this work, we study a particular class of scattering problems where the integral operator in the correspond...
متن کاملThe rigged Hilbert space approach to the Lippmann - Schwinger equation . Part I
We exemplify the way the rigged Hilbert space deals with the Lippmann-Schwinger equation by way of the spherical shell potential. We explicitly construct the Lippmann-Schwinger bras and kets along with their energy representation, their time evolution and the rigged Hilbert spaces to which they belong. It will be concluded that the natural setting for the solutions of the Lippmann-Schwinger equ...
متن کاملApplication of the Inhomogeneous Lippmann-Schwinger Equation to Inverse Scattering Problems
Abstract. In this paper we present a hybrid approach to numerically solving two-dimensional electromagnetic inverse scattering problems, whereby the unknown scatterer is hosted by a possibly inhomogeneous background. The approach is “hybrid” in that it merges a qualitative and a quantitative method to optimize the way of exploiting the a priori information on the background within the inversion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2003